
Chapter 1

Fourier Series

Basic definitions and examples of Fourier series are given in Section 1. In Section 2 we
prove the fundamental Riemann-Lebesgue lemma and discuss the Fourier series from the
mapping point of view. Pointwise and uniform convergence of the Fourier series of a
function to the function itself under various regularity assumptions are studied in Section
3. As an application, it is shown that every continuous function can be approximated by
polynomials in a uniform manner in Section 4. In Section 5 the L2-theory of Fourier series
is discussed. In the two appendices basic facts on series of functions and sets of measure
zero are present respectively.

1.1 Definition and Examples

In the previous power series has been studied. Now we come to Fourier series.

First of all, a trigonometric series is a series of functions of the form

∞∑
n=0

(an cosnx+ bn sinnx), an, bn ∈ R.

As cos 0x = 1 and sin 0x = 0, we always set b0 = 0 and express the series as

a0 +
∞∑
n=1

(an cosnx+ bn sinnx).

It is called a cosine series if all bn’s vanish and sine series if all an’s vanish. Trigono-
metric series form an important class of series of functions. In Mathematical Analysis II,
we studied the convergence of the series of functions. We recall

• Uniform convergence implies pointwise convergence of a series of functions,

1



2 CHAPTER 1. FOURIER SERIES

• Absolute convergence implies pointwise convergence of a series of functions,

• Weierstrass M-Test for uniform and absolute convergence (see Appendix I).

For instance, using the fact | cosnx|, | sinnx| ≤ 1, Weierstrass M-Test tells us that a
trigonometric series is uniformly and absolutely convergent when its coefficients satisfy∑

n

|an|,
∑
n

|bn| <∞ ,

and this is the case when |an|, |bn| ≤ Cn−s,∀n ≥ 1, for some constant C and s > 1. Since
the partial sums are continuous functions and uniform convergence preserves continuity,
the infinite series

ϕ(x) ≡ a0 +
∞∑
n=1

(an cosnx+ bn sinnx)

is a continuous function on R. We claim that ϕ is also of period 2π. For, by pointwise
convergence, we have

ϕ(x+ 2π) = lim
n→∞

n∑
k=0

(
ak cos(kx+ 2kπ) + bk sin(kx+ 2kπ)

)
= lim

n→∞

n∑
k=0

(ak cos kx+ bk sin kx)

= ϕ(x),

hence it is 2π-periodic.

Recall that a power series is associated to a function which is smooth at a certain
point. Indeed, it is given by the Taylor’s series at this point. Let the point be x0 and f
is smooth in an open interval containing x0, this series is given by

∞∑
n=0

cn(x− x0)n , cn =
f (n)(x0)

n!
.

Similarly, there is a trigonometric series associated to an integrable function. It is called
the Fourier series of the function. Let us define it now.

Given a 2π-periodic function which is Riemann integrable function f on [−π, π], its
Fourier series or Fourier expansion is the trigonometric series given by

an =
1

π

ˆ π

−π
f(y) cosny dy, n ≥ 1

bn =
1

π

ˆ π

−π
f(y) sinny dy, n ≥ 1 and

a0 =
1

2π

ˆ π

−π
f(y) dy.

(1.1)
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Note that a0 is the average of the function over the interval. From this definition we gather
two basic information. First, the Fourier series of a function involves the integration of
the function over an interval, hence any modification of the values of the function over
a subinterval, not matter how small it is, may change the Fourier coefficients an and
bn. This is unlike power series which only depend on the local properties (derivatives
of all order at a designated point). We may say Fourier series depend on the global
information but power series only depend on local information. Second, recalling from
the theory of Riemann integral, we know that two integrable functions which are equal
almost everywhere have the same integral. (We will see the converse is also true, namely,
two functions with the same Fourier series are equal almost everywhere.) In Appendix II
we recall the concept of a measure zero set and some of its basic properties. Therefore,
the Fourier series of two such functions are the same. In particular, the Fourier series of a
function is completely determined with its value on the open interval (−π, π), regardless
its values at the endpoints.

The motivation of the Fourier series comes from the belief that for a “nice function”
of period 2π, its Fourier series converges to the function itself. In other words, we have

f(x) = a0 +
∞∑
n=1

(an cosnx+ bn sinnx) , ∀x ∈ R. (1.2)

Whenever this holds, the coefficients an, bn are given by (1.1). A formal argument proceeds
as follows. Multiply (1.2) by cosmx and then integrate over [−π, π]. Using the relations

ˆ π

−π
cosnx cosmxdx =

{
π, n = m
0, n 6= m

,

ˆ π

−π
cosnx sinmxdx = 0 (n,m ≥ 1), and

ˆ π

−π
cosnx dx =

{
2π, n = 0
0, n 6= 0

,

we arrive at the expression of an, n ≥ 0, in (1.2). Similarly, by multiplying (1.2) by sinmx
and then integrate over [−π, π], one obtain the expression of bn, n ≥ 1, in (1.2) after using

ˆ π

−π
sinnx sinmxdx =

{
π, n = m
0, n 6= m

.

Of course, (1.2) arises from the hypothesis that every sufficiently nice function of period
2π is equal to its Fourier expansion. The study of under which “nice conditions” this
could happen is one of the main objects in the theory of Fourier series.

We can associate a Fourier series for any integrable function on [−π, π]. As the right
hand side of (1.2) consists of 2π-periodic functions, it is natural to extend its left hand side,
that is, the function f itself, as a 2π-periodic function. The extension is straightforward.
First of all, the real line can be expressed as the disjoint union of intervals ((2n−1)π, (2n+
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1)π], n ∈ Z. Each number x belongs to one and exactly one such interval. Let f̃(x) =
f(x − 2nπ) where n is the unique integer satisfying (2n − 1)π < x ≤ (2n + 1)π. It
is clear that f̃ is equal to f on (−π, π]. As the original function is defined on [−π, π],
apparently an extension in strict sense is possible only if f(−π) = f(π). Since the function
value at one point does not change the Fourier series, from now on it will be understood
that the extension of a function to a 2π-periodic function refers to the extension for
the restriction of this function on (−π, π]. Note that for the 2π-periodic extension of a
continuous function on [−π, π] has a jump discontinuity at ±π when f(π) 6= f(−π). It is
is continuous on R if and only if f(−π) = f(π). In the following we will not distinguish
f with its extension f̃ .

We will use

f(x) ∼ a0 +
∞∑
n=1

(an cosnx+ bn sinnx)

to denote the fact that the right hand side of this expression is the Fourier series of f .
Note that in general ∼ cannot be replaced by =.

Example 1.1 We consider the function f1(x) = x. Its extension is a piecewise smooth
function with jump discontinuities at (2n+ 1)π, n ∈ Z. As f1 is odd and cosnx is even,

πan =

ˆ π

−π
x cosnx dx = 0, n ≥ 0,

and

πbn =

ˆ π

−π
x sinnx dx

= −x cosnx

n

∣∣∣π
−π

+

ˆ π

−π

cosnx

n
dx

= (−1)n+12π

n
.

Therefore,

f1(x) ∼ 2
∞∑
n=1

(−1)n+1

n
sinnx.

Since f1 is an odd function, it is reasonable to see that no cosine functions are involved
in its Fourier series. How about the convergence of this Fourier series? Although the
coefficients decay like O(1/n) as n→∞, its convergence is not clear at this moment. On
the other hand, this Fourier series is equal to 0 at x = ±π but f1(±π) = π. So, one thing
is sure, namely, the Fourier series is not always equal to its function. It is worthwhile to
observe that the bad points ±π are precisely the discontinuity points of f1.

Notation The big O and small ◦ notations are very convenient in analysis. We say a
sequence {xn} satisfies xn = O(ns) means that there exists a constant C independent of
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n such that |xn| ≤ Cns as n→∞, in other words, the growth (resp. decay s ≥ 0) of {xn}
is not faster (resp. slower s < 0) the s-th power of n. On the other hand, xn = ◦(ns)
means |xn|n−s → 0 as n→∞.

Example 1.2 Next consider the function f2(x) = x2. Unlike the previous example,
its 2π-periodic extension is continuous on R. After performing integration by parts, the
Fourier series of f2 is seen to be

f2(x) ≡ x2 ∼ π2

3
− 4π

∞∑
n=1

(−1)n+1

n2
cosnx.

As f2 is an even function, this is a cosine series. The rate of decay of the Fourier co-
efficients is like O(1/n2). Using Weierstrass M-test, this series converges uniformly to a
continuous function. Later we will see that this continuous function is equal to f2, but at
this stage we do not know.

We list more examples of Fourier series of functions and leave them for you to verify.

(a) f3(x) ≡ |x| ∼ π

2
− 4

π

∞∑
n=1

1

(2n− 1)2
cos(2n− 1)x,

(b) f4(x) =

{
1, x ∈ [0, π]
−1, x ∈ (−π, 0)

∼ 4

π

∞∑
n=1

1

2n− 1
sin(2n− 1)x,

(c) f5(x) =

{
x(π − x), x ∈ [0, π]
x(π + x), x ∈ (−π, 0)

∼ 8

π

∞∑
n=1

1

(2n− 1)3
sin(2n− 1)x.

Let {cn}∞−∞ be a bisequence of complex numbers. (A bisequence is a map from Z to
C.) A (complex) trigonometric series is the infinite series associated to the bisequence
{cneinx}∞−∞ and is denoted by

∑∞
−∞ cne

inx. To be in line with the real case, it is said to
be convergent at x if

lim
n→∞

n∑
k=−n

cne
nix

exists. Now, a complex Fourier series can be associated to a complex-valued function.
Let f be a 2π-periodic complex-valued function which is integrable on [−π, π]. Its Fourier
series is given by the series

f(x) ∼
∞∑

n=−∞

cne
inx,

where the Fourier coefficients cn are defined to be

cn =
1

2π

ˆ π

−π
f(x)e−inxdx, n ∈ Z.



6 CHAPTER 1. FOURIER SERIES

Here for a complex function f , its integration over some [a, b] is defined to be

ˆ b

a

f(x)dx =

ˆ b

a

f1(x)dx+ i

ˆ b

a

f2(x)dx,

where f1 and f2 are respectively the real and imaginary parts of f . It is called integrable
if both real and imaginary parts are integrable. The same as in the real case, formally
the expression of cn is obtained as in the real case by first multiplying the relation

f(x) =
∞∑

n=−∞

cne
inx

with eimx and then integrating over [−π, π] with the help from the relation

ˆ π

−π
eimxe−inx dx =

{
2π, n = m
0, n 6= m

.

When f is of real-valued, there are two Fourier series, that is, the real and the complex
ones. To relate them it is enough to observe the Euler’s formula eiθ = cos θ + i sin θ, so
for n ≥ 1

2πcn =

ˆ π

−π
f(x)e−inxdx

=

ˆ π

−π
f(x) (cosnx− i sinnx) dx

=

ˆ π

−π
f(x) cosnxdx− i

ˆ π

−π
f(x) sinnxdx

= π(an − ibn) .

we see that

cn =
1

2
(an − ibn), n ≥ 1, c0 = a0 .

By a similar computation, we have

cn =
1

2
(a−n + ib−n), n ≤ −1 .

It follows that c−n = cn for all n. In fact, the converse is true, that is, a complex Fourier
series is the Fourier series of a real-valued function if and only if c−n = cn holds for all n.
Indeed, letting

f(x) ∼
∞∑

n=−∞

cne
inx

be the Fourier series of f , it is straightforward to verify that

f(x) ∼
∞∑

n=−∞

dne
inx, dn = c−n .
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Hence when f is real-valued, f = f so cn = c−n holds. The complex form of Fourier series
sometimes makes expressions and computations more elegant. We will use it whenever it
makes things simpler.

We have been working on the Fourier series of 2π-periodic functions. For functions
of 2T -period, their Fourier series are not the same. They can be found by a scaling
argument. Let f be 2T -periodic. The function g(x) = f(Tx/π) is a 2π-periodic function.
Thus,

f

(
Tx

π

)
= g(x) ∼ a0 +

∞∑
n=1

(an cosnx+ bn sinnx),

where a0, an, bn, n ≥ 1 are the Fourier coefficients of g. By a change of variables, we can
express everything inside the coefficients in terms of f , cosnπx/T and sinnπx/T . The
result is

f(x) ∼ a0 +
∞∑
n=1

(
an cos

nπ

T
x+ bn sin

nπ

T
x
)
,

where

an =
1

T

ˆ T

−T
f(y) cos

nπ

T
y dy,

bn =
1

T

ˆ T

−T
f(y) sin

nπ

T
y dy, n ≥ 1, and

a0 =
1

2T

ˆ T

−T
f(y) dy.

It reduces to (1.1) when T is equal to π. Can you give a reasonable definition of the
Fourier series of an integrable function on [a, b]?

1.2 Riemann-Lebesgue Lemma

From the examples of Fourier series of functions in the previous section we see that the
coefficients decay to 0 eventually. We will show that this is generally true. This is the
content of the following result.

Theorem 1.1 (Riemann-Lebesgue Lemma). For f ∈ R[a, b],

ˆ b

a

f(x) cosnx dx,

ˆ b

a

f(x) sinnx dx→ 0 , as n→∞ .

In particular, taking [a, b] = [−π, π], we have an, bn → 0 as n→∞.
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To prepare for the proof, we study how to approximate an integrable function by step
functions. Let a0 = a < a1 < · · · < aN = b be a partition of [a, b]. A step function
s satisfies s(x) = sj, ∀x ∈ (aj, aj+1], ∀j ≥ 0. The value of s at a is not important, but
for definiteness let’s set s(a) = s0. We can express a step function in a better form by
introducing the characteristic function χE for a set E ⊂ R:

χE =

{
1, x ∈ E,
0, x /∈ E.

Then,

s(x) =
N−1∑
j=0

sjχIj , Ij = (aj, aj+1], j ≥ 1, I0 = [a0, a1].

Lemma 1.2. For every step function s, there exists some constant C independent of n
such that ∣∣∣∣ˆ b

a

s(x) cosnxdx

∣∣∣∣ , ∣∣∣∣ˆ b

a

s(x) sinnxdx

∣∣∣∣ ≤ C

n
, ∀n ≥ 1 .

Proof. Let s(x) =
∑N−1

j=0 sjχIj . We have

ˆ b

a

s(x) cosnxdx =

ˆ b

a

N−1∑
j=0

sjχIj cosnx dx

=
N−1∑
j=0

sj

ˆ aj+1

aj

cosnx dx

=
1

n

N−1∑
j=0

sj(sinnaj+1 − sinnaj).

It follows that ∣∣∣∣ˆ b

a

s(x) cosnxdx

∣∣∣∣ ≤ C

n
, ∀n ≥ 1, C = 2

N−1∑
j=0

|sj|.

Clearly a similar estimate holds for the other case.

Lemma 1.3. Let f ∈ R[a, b]. Given ε > 0, there exists a step function s such that s ≤ f
on [a, b] and

0 ≤
ˆ b

a

(f − s) < ε.

Proof. As f is integrable, it can be approximated from below by its Darboux lower sums.
In other words, for ε > 0, we can find a partition a = a0 < a1 < · · · < aN = b such that

0 ≤
ˆ b

a

f −
N−1∑
j=0

mj(aj+1 − aj) < ε,
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where mj = inf {f(x) : x ∈ [aj, aj+1]}. It follows that

0 ≤
ˆ b

a

(f − s) < ε

after setting

s(x) =
N−1∑
j=0

mjχIj , Ij = (aj, aj+1], j ≥ 1, I0 = [a0, a1].

Now we prove Theorem 1.1. For ε > 0, we can find s as constructed in Lemma 1.3 such
that 0 ≤ f − s and

0 ≤
ˆ b

a

(f − s) < ε

2
.

By Lemma 1.2, there exists some n0 such that∣∣∣∣ˆ b

a

s(x) cosnxdx

∣∣∣∣ < ε

2
,

for all n ≥ n0. Therefore,∣∣∣∣ˆ b

a

f(x) cosnxdx

∣∣∣∣ ≤ ∣∣∣∣ˆ b

a

(f − s) cosnx dx

∣∣∣∣+

∣∣∣∣ˆ b

a

s(x) cosnxdx

∣∣∣∣
≤
ˆ b

a

|f − s|+ ε

2

<
ε

2
+
ε

2
= ε .

The same argument applies when cosnx is replaced by sinnx. The proof of Riemann-
Lebesgue Lemma is completed.

It is useful to bring in a “mapping” point of view between functions and their Fourier
series. Let R2π be the collection of all 2π-periodic complex-valued functions integrable
on [−π, π] and C consisting of all complex-valued bisequences {cn} satisfying cn → 0 as
n→ ±∞. The Fourier series sets up a mapping Φ from R2π to C by sending f to {f̂(n)}
where, to make things clear, we have let f̂(n) = cn, the n-th Fourier coefficient of f . When
real-functions are considered, restricting to the subspace of C given by those satisfying
c−n = cn, Φ maps all real functions into this subspace. Perhaps the first question we ask
is: Is Φ one-to-one? Clearly the answer is no, for two functions which differ on a set of
measure zero have the same Fourier coefficients. However, we have the following result
(which will be established later):
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Uniqueness Theorem. The Fourier series of two functions in R2π coincide if and only
if they are equal almost everywhere.

Thus Φ is essentially one-to-one. We may also study how various properties in R2π and
C correspond under Φ. In fact, there are obvious and surprising ones. Some of them are
listed below and more can be found in the exercise. Observe that both R2π and C carry
the structure of a vector space over C.

Property 1. Φ is a linear map. Observe that both R2π and C form vector spaces over
R or C. The linearity of Φ is clear from its definition.

Property 2. When f ∈ R2π is k-th differentiable on R and all derivatives up to k-th

order belong to R2π, f̂
k(n) = (in)kf̂(n) for all n ∈ Z. See Proposition 1.4 below for a

proof. This property shows that differentiation turns into the multiplication of a factor
(in)k under Φ. This is amazing!

Property 3. Every translation in R induces a “translation operation” on functions
defined on R. More specifically, for a ∈ R, set fa(x) = f(x + a), x ∈ R. Clearly
fa belongs to R2π. We have f̂a(n) = einaf̂(n). This property follows directly from the
definition. It shows that a translation in R2π turns into the multiplication of a factor eina

under Φ.

Proposition 1.4. Let f be a 2π-periodic function which is differentiable on [−π, π] with
f ′ ∈ R2π. If

f ′(x) ∼ a′0 +
∞∑
n=1

(
a′n cosnx+ b′n sinnx

)
,

then a′0 = 0, a′n = nbn, and b′n = −nan . In complex notation, f̂ ′(n) = inf̂(n).

Proof. We compute

πa′n =

ˆ π

−π
f ′(y) cosny dy

= f(y) cosny|π−π −
ˆ π

−π
f(y)(−n sinny) dy

= n

ˆ π

−π
f(y) sinny dy

= πnbn.
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Similarly,

πb′n =

ˆ π

−π
f ′(y) sinny dy

= f(y) sinny|π−π −
ˆ π

−π
f(y)n cosny dy

= −n
ˆ π

−π
f(y) cosny dy

= −πnan.

Property 2 links the regularity of the function to the rate of decay of its Fourier
coefficients. This is an extremely important property. When f is a 2π-periodic function
whose derivatives up to k-th order belong to R2π, applying Riemann-Lebesgue lemma to

f (k) we know that ˆf (k)(n) = ◦(1) as n→∞. By Property 2 it follows that f̂(n) = ◦(n−k),
that is, the Fourier coefficients of f decay faster that n−k. Since

∑∞
n=1 n

−2 < ∞, an
application of Weierstrass M-test establishes the following result: The Fourier series of f
converges uniformly provided f, f ′ and f ′′ belong to R2π. Therefore, the function

g(x) ≡ a0 +
∞∑
n=1

(an cosnx+ bn sinnx)

is a continuous 2π-periodic function. Using its uniform convergence, we see that the
Fourier coefficients of g are given by an and bn, the same as f . By the Uniqueness
Theorem stated earlier we conclude that g is equal to f , that is, the Fourier series of f
is equal to f provided f, f ′, f ′′ ∈ R2π. A more general result will be proved in the next
section.

1.3 Convergence of Fourier Series

In this section we study the convergence of the Fourier series of a function to the function
itself. Recall that the series a0 +

∑∞
n=1(an cosnx+ bn sinnx), or

∑∞
n=−∞ cne

inx, where an,
bn, cn are the Fourier coefficients of a function f converges to f at x means that the n-th
partial sum

(Snf)(x) = a0 +
n∑
k=1

(ak cos kx+ bk sin kx)

or

(Snf)(x) =
n∑

k=−n

cke
ikx

converges to f(x) as n→∞.
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We start by expressing the partial sums in closed form. Indeed,

(Snf)(x) = a0 +
n∑
k=1

(ak cos kx+ bk sin kx)

=
1

2π

ˆ π

−π
f +

n∑
k=1

1

π

ˆ π

−π
f(y)(cos ky cos kx+ sin ky sin ky) dy

=
1

π

ˆ π

−π

(1

2
+

n∑
k=1

cos k(y − x)
)
f(y) dy

=
1

π

ˆ x+π

x−π

(1

2
+

n∑
k=1

cos kz
)
f(x+ z) dz

=
1

π

ˆ π

−π

(1

2
+

n∑
k=1

cos kz
)
f(x+ z) dz ,

where in the last step we have used the fact that the integrals over any two periods are
the same. Using the elementary formula

cos θ + cos 2θ + · · ·+ cosnθ =
sin
(
n+ 1

2

)
θ − sin 1

2
θ

2 sin θ
2

, θ 6= 0,

we obtain
1

2
+

n∑
k=1

cos kθ =
sin(n+ 1

2
)θ

2 sin θ
2

.

Noting that by the L’Hospital Rule,

lim
θ→0

sin(n+ 1
2
)θ

2 sin θ
2

=
2n+ 1

2
,

we introduce the Dirichlet kernel Dn by

Dn(z) =


sin
(
n+ 1

2

)
z

2π sin 1
2
z

, z 6= 0

2n+ 1

2π
, z = 0.

(In fact, there are infinitely many Dirichlet kernels indexed by n, but usually people refer
them as one.) It is a continuous, 2π-periodic function. We have successfully expressed
the partial sums of the Fourier series in the following closed form:

(Snf)(x) =

ˆ π

−π
Dn(z)f(x+ z) dy,

Taking f ≡ 1, we have Snf = 1 for all n. Hence

1 =

ˆ π

−π
Dn(z) dz.
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We have arrived at the fundamental relation

(Snf)(x)− f(x) =

ˆ π

−π
Dn(z)(f(x+ z)− f(x)) dz. (1.3)

In order to show Snf(x)→ f(x), it suffices to show the right hand side of (1.3) tends to
0 as n→∞.

The Dirichlet kernel plays a crucial role in the study of the convergence of Fourier
series. We list some of its properties as follows.

Property I. Dn(z) is an even, continuous, 2π-periodic function vanishing at z =
2kπ/(2n+ 1),−n ≤ k ≤ n, on [−π, π].

Property II. Dn attains its maximum value (2n+ 1)/2π at 0.

Property III. ˆ π

−π
Dn(z)dz = 1 .

Property IV. For every δ > 0,

ˆ δ

0

|Dn(z)|dz →∞, as n→∞.

Only the last property needs a proof. Indeed, for each n we can fix an N such that
πN < (2n+ 1)δ/2 ≤ (N + 1)π, so N →∞ as n→∞. We compute

ˆ δ

0

|Dn(z)|dz =

ˆ δ

0

| sin(n+ 1
2
)z|

2π| sin z
2
|

dz

≥ 1

π

ˆ (n+ 1
2
)δ

0

| sin t|
t

dt

≥ 1

π

ˆ Nπ

0

| sin t|
t

dt

=
1

π

N∑
k=1

ˆ kπ

(k−1)π

| sin t|
t

dt

=
1

π

N∑
k=1

ˆ π

0

| sin s|
s+ (k − 1)π

ds

≥ 1

π

N∑
k=1

ˆ π

0

| sin s|
πk

ds

=
2

π2

N∑
k=1

1

k
, as

ˆ π

0

| sin s| ds = 2,

→ ∞,
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as N →∞.

To elucidate the effect of the kernel, we fix a small δ > 0 and split the integral into
two parts: ˆ π

−π
χA(z)Dn(z)(f(x+ z)− f(x)) dz,

and ˆ π

−π
χB(z)Dn(z)(f(x+ z)− f(x)) dz,

where A = (−δ, δ) and B = [−π, π] \ A. The second integral can be written as

ˆ π

−π

χB(z)(f(x+ z)− f(x))

2π sin z
2

sin(n+ 1/2)z dz.

As |sin z/2| has a positive lower bound on B, the function

χB(z)(f(x+ z)− f(x))

2π sin z
2

belongs to R[−π, π] and the second integral tends to 0 as n → ∞ in view of Riemann-
Lebesgue lemma. The trouble lies on the first integral. It can be estimated by

ˆ δ

−δ
|Dn(z)||f(x+ z)− f(x)|dz.

In view of Property IV, No matter how small δ is, this term may go to ∞ so it is not
clear how to estimate this integral.

The difficulty can be resolved by imposing a further regularity assumption on the
function. First a definition. A function f defined on [a, b] is called Lipschitz continuous
at x ∈ [a, b] if there exist L and δ such that

|f(y)− f(x)| ≤ L |y − x| , ∀y ∈ [a, b], |y − x| ≤ δ. (1.4)

Here both L and δ depend on x. Incidentally, we point out that if f ∈ C[a, b] is Lipschitz
continuous at x, there exists some L′ such that

|f(y)− f(x)| ≤ L′|y − x|, ∀y ∈ [a, b].

In fact, this comes from (2.4) if |y − x| ≤ δ. For y satisfying |y − x| > δ, we have

|f(y)− f(x)| ≤ |f(y)|+ |f(x)|
δ

|y − x|,

hence we could take

L′ = max

{
L,

2M

δ

}
,

where M = sup{|f(y)| : y ∈ [a, b]}.
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Theorem 1.5. Let f be a 2π-periodic function integrable on [−π, π]. Suppose that f is
Lipschitz continuous at x. Then {Snf(x)} converges to f(x) as n→∞.

Note that we have identified f with its 2π-periodic extension f̃ . When x = ±π, f is
Lipschitz continuous at x means f̃ is Lipschitz continuous at x.

Proof. Let Φδ be a cut-off function satisfying (a) Φδ ∈ C(R), Φδ ≡ 0 outside (−δ, δ), (b)
0 ≤ Φδ ≤ 1 and (c) Φδ = 1 on (−δ/2, δ/2). We write

(Snf)(x)− f(x) =

ˆ π

−π
Dn(z)(f(x+ z)− f(x)) dz

=
1

2π

ˆ π

−π

sin(n+ 1
2
)z

sin z
2

(f(x+ z)− f(x)) dz

=
1

2π

ˆ π

−π
Φδ(z)

sin(n+ 1
2
)z

sin z
2

(f(x+ z)− f(x)) dz

+
1

π

ˆ π

−π
(1− Φδ(z))

sin(n+ 1
2
)z

sin z
2

(f(x+ z)− f(x)) dz

≡ I + II .

By our assumption on f , there exists δ0 > 0 such that

|f(x+ z)− f(x)| ≤ L |z| , ∀ |z| < δ0.

(If you use the discussion following (1.4), this δ0 is not needed.) Using sin θ/θ → 1 as
θ → 0, there exists δ1 such that 2| sin z/2| ≥ |z/2| for all z, |z| < δ1. For z, |z| < δ ≡
min {δ0, δ1}, we have |f(x+ z)− f(x)|/| sin z/2| ≤ 4L and

|I| ≤ 1

2π

ˆ δ

−δ
Φδ(z)

∣∣sin(n+ 1
2
)z
∣∣∣∣sin z

2

∣∣ |f(x+ z)− f(x)| dz

≤ 1

2π

ˆ δ

−δ
4Ldz

=
4δL

π
.

(1.5)

For ε > 0, we further restrict and fix one δ so that

4δL

π
<
ε

2
. (1.6)

After fixing δ, we turn to the second integral

II =
1

2π

ˆ π

−π

(1− Φδ(z))(f(x+ z)− f(x))

sin z
2

sin
(
n+

1

2

)
z dz

=
1

2π

ˆ π

−π

(1− Φδ(z))(f(x+ z)− f(x))

sin z
2

(
cos

z

2
sinnz + sin

z

2
cosnz

)
dz

≡
ˆ π

−π
F1(x, z) sinnz dz +

ˆ
J

F2(x, z) cosnz dz,
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where

F1(x, z) =
1

2π

(1− Φδ(z))(f(x+ z)− f(x))

sin z
2

cos
z

2
,

and

F2(x, z) =
1

2π

(1− Φδ(z))(f(x+ z)− f(x))

sin z
2

sin
z

2
.

As 1 − Φδ(z) = 0 on [−δ/2, δ/2], these two functions vanish outside the two intervals
[−π,−δ/2] and [δ/2, π]. Now | sin z/2| has a positive lower bound on these two intervals,
so F1 and F2 are integrable on [−π, π]. By Riemann-Lebesgue Lemma, for ε > 0, there is
some n0 such that∣∣∣∣ˆ π

−π
F1 sinnz dz

∣∣∣∣ , ∣∣∣∣ˆ π

−π
F2 cosnz dz

∣∣∣∣ < ε

4
, ∀n ≥ n0. (1.7)

Putting (1.5), (1.6) and (1.7) together,

|Snf(x)− f(x)| < ε

2
+
ε

4
+
ε

4
= ε, ∀n ≥ n0.

We have shown that Snf(x) tends to f(x) whenever f is Lipschitz continuous at x.

We leave some remarks concerning this proof. First, the cut-off function Φδ can be
replaced by χ[−δ,δ] without affecting the proof. (However, it will be needed in the proof
of Theorem 1.7.) Second, the regularity condition Lipschitz continuity is used to kill off
the growth of the kernel at x. Third, this method used in this proof is a standard one. It
will appear in many other places.

A careful examination of it reveals a convergence result for functions with jump dis-
continuity after using the evenness of the Dirichlet kernel.

Theorem 1.6. Let f be a 2π-periodic function integrable on [−π, π]. Suppose at some
x ∈ [−π, π], limy→x+ f(y) and limy→x− f(y) exist and there are δ > 0 and constant L such
that

|f(y)− f(x+)| ≤ L(y − x), ∀y, 0 < y − x < δ,

and
|f(y)− f(x−)| ≤ L(x− y), ∀y, 0 < x− y < δ.

Then {Snf(x)} converges to (f(x+) + f(x−))/2 as n→∞.

Again, note that we have identified f with f̃ . Here f(x+) and f(x−) stand for
limy→x+ f(y) and limy→x− f(y) respectively. We leave the proof of this theorem as an
exercise.

A function f defined on [a, b] is called to satisfy the Lipschitz condition if there
exists an L such that

|f(x)− f(y)| ≤ L|x− y| , ∀x, y ∈ [a, b] .
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(In some books this condition is called “a Lipschitz condition”. Frankly speaking, I don’t
know the difference.) When f satisfies the Lipschitz condition, it is Lipschitz continuous
everywhere. It is better to call this condition uniformly Lipschitz continuous. Every
continuously differentiable function on [a, b] satisfies the Lipschitz condition. In fact, by
the fundamental theorem of calculus, for x, y ∈ [a, b],

|f(y)− f(x)| =
∣∣∣ ˆ y

x

f ′(t)dt
∣∣∣

≤ M |y − x|,

where M = sup{|f ′(t)| : t ∈ [a, b]}. Similarly, every continuous, piecewise C1-function
satisfies the Lipschitz condition, see exercise.

Now, we have a theorem on the uniform convergence of the Fourier series of a function
to the function itself.

Theorem 1.7. Let f a 2π-periodic function satisfying the Lipschitz condition on R. Its
Fourier series converges to f uniformly as n→∞.

Proof. Observe that when f is Lipschitz continuous on R, δ0 and δ1 can be chosen inde-
pendent of x and (1.5), (1.6) holds uniformly in x. In fact, δ0 only depends on L, the
constant appearing in the Lipschitz condition. Thus the theorem follows if n0 in (1.7) can
be chosen uniformly in x. This is the content of the lemma below. We apply it by taking
F (x, y) to be F1(x, z) or F2(x, z) with y replaced by z.

Lemma 1.8. Let F (x, y) be periodic in y and F ∈ C([−π, π]× [−π, π]). For any fixed x,

g(n, x) ≡ 1

2π

ˆ π

−π
F (x, y)e−iny dy → 0

uniformly in x as n→∞.

Proof. We need to show that for every ε > 0, there exists some n0 independent of x such
that

|g(n, x)| < ε, ∀n ≥ n0.

Observe that

g(n, x) =

ˆ π

−π
F (x, y)e−iny dy

=

ˆ π−π
n

−π−π
n

F
(
x, z +

π

n

)
e−in(z+

π
n
) dz y = z +

π

n
,

= −
ˆ π

−π
F
(
x, z +

π

n

)
e−inz dz (F is 2π-periodic).
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We have

g(n, x) =
1

2

ˆ π

−π

(
F (x, y)− F

(
x, y +

π

n

))
e−iny dy.

As F ∈ C([−π, π] × [−π, π]), it is uniformly continuous in [−π, π] × [−π, π]. For ε > 0,
there exists a δ such that

|F (x, y)− F (x′, y′)| < ε

π
if |x− x′| , |y − y′| < δ.

We take n0 so large that π/n0 < δ. Then, using |e−iny| = 1,

|g(n, x)| ≤ 1

2

ˆ π

−π

∣∣∣F (x, y)− F
(
x, y +

π

n

)∣∣∣ dy
<

ε

2π

ˆ π

−π
dy

= ε, ∀n ≥ n0.

Example 1.3. We return to the functions discussed in Examples 1.1 and 1.2. Indeed,
f1(x) = x is smooth except at nπ. According to Theorem 1.5, the series

2
∞∑
n=1

(−1)n+1

n
sinnx

converges to x for every x ∈ (−π, π). On the other hand, we observed before that the series
tend to 0 at x = ±π. As f1(π+) = −π and f(π−) = π, we have f1(π+)+f(π−) = 0, which
is in consistency with Theorem 1.5. In the second example, f2(x) = x2 is continuous,
2π-periodic. By Theorem 1.7, its Fourier series

π2

3
− 4

∞∑
n=1

(−1)n+1

n2
cosnx

converges to x2 uniformly on [−π, π].

So far we have been working on the Fourier series of 2π-periodic functions. It is clear
that the same results apply to the Fourier series of 2T -periodic functions for arbitrary
positive T .

We have shown the convergence of the Fourier series under some additional regular-
ity assumptions on the function. But the basic question remains, that is, is the Fourier
series of a continuous, 2π-periodic function converges to itself? It turns out the answer
is negative. A not-so-explicit example can be found in Stein-Shakarchi and an explicit
but complicated one was given by Fejér (see Zygmund “Trigonometric Series”). You may
google for more. In fact, using the uniform boundedness principle in functional analysis,
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one can even show that “most” continuous functions have divergent Fourier series. The
situation is very much like in the case of the real number system where transcendental
numbers are uncountable while algebraic numbers are countable despite the fact that it
is difficult to establish a concrete number is transcendental.

1.4 Weierstrass Approximation Theorem

As an application of the uniform convergence theorem of the last section, we now prove
a theorem of Weierstrass concerning the approximation of continuous functions by poly-
nomials. First we consider how to approximate a continuous function by continuous,
piecewise linear functions. A continuous function on [a, b] is piecewise linear if there
exists a partition a = a0 < a1 < · · · < an = b such that f is linear on each subinterval
[aj, aj+1].

Proposition 1.9. Let f be a continuous function on [a, b]. For every ε > 0, there exists
a continuous, piecewise linear function g such that ‖f − g‖∞ < ε.

Recall that ‖f − g‖∞ = sup{|f(x)− g(x)| : x ∈ [a, b]}.

Proof. As f is uniformly continuous on [a, b], for every ε > 0, there exists some δ such
that |f(x)− f(y)| < ε/2 for x, y ∈ [a, b], |x− y| < δ. We partition [a, b] into subintervals
Ij = [aj, aj+1] whose length is less than δ and define g to be the piecewise linear function
satisfying g(aj) = f(aj) for all j. For x ∈ [aj, aj+1], g is given by

g(x) =
f(aj+1)− f(aj)

aj+1 − aj
(x− aj) + f(aj).

We have

|f(x)− g(x)| = |f(x)− f(aj+1)− f(aj)

aj+1 − aj
(x− aj) + f(aj)|

≤ |f(x)− f(aj)|+ |
f(aj+1)− f(aj)

aj+1 − aj
(x− aj)|

≤ |f(x)− f(aj)|+ |f(aj+1)− f(aj)|
< ε,

and the result follows.

Next we study how to approximate a continuous function by trigonometric polynomials
(or, equivalently, finite Fourier series).
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Proposition 1.10. Let f be a continuous function on [0, π]. For ε > 0, there exists a
trigonometric polynomial h such that ‖f − h‖∞ < ε.

Proof. First we extend f to [−π, π] by setting f(x) = f(−x) (using the same notation) to
obtain a continuous function on [−π, π] with f(−π) = f(π). By the previous proposition,
we can find a continuous, piecewise linear function g such that ‖f − g‖∞ < ε/2. Since
g(−π) = f(−π) = f(π) = g(π), g can be extended as the Lipschitz continuous, 2π-
periodic function. By Theorem 1.7, there exists some N such that ‖g − SNg‖∞ < ε/2.
Therefore, ‖f − SNg‖∞ ≤ ‖f − g‖∞ + ‖g − SNg‖∞ < ε/2 + ε/2 = ε. The proposition
follows after noting that every finite Fourier series is a trigonometric polynomial (see
Exercise).

Theorem 1.11 (Weierstrass Approximation Theorem). Let f ∈ C[a, b]. Given
ε > 0, there exists a polynomial p such that ‖f − p‖∞ < ε.

Proof. Consider [a, b] = [0, π] first. Extend f to [−π, π] by reflection as before and, for
ε > 0, fix a trigonometric polynomial h such that ‖f −h‖∞ < ε/2. This is possible due to
the previous proposition. Now, we express h as a finite Fourier series a0+

∑N
n=1(an cosnx+

bn sinnx). Using the fact that

cos θ =
∞∑
n=0

(−1)nθ2n

(2n)!
, and sin θ =

∞∑
n=1

(−1)n−1θ2n−1

(2n− 1)!
,

where the convergence is uniform on [−π, π], each cosnx and sinnx, n = 1, · · · , N, can
be approximated by polynomials. Putting all these polynomials together we obtain a
polynomial p(x) satisfying ‖h− p‖∞ < ε/2. It follows that ‖f − p‖∞ ≤ ‖f − h‖∞ + ‖h−
p‖∞ < ε/2 + ε/2 = ε.

When f is continuous on [a, b], the function ϕ(t) = f( b−a
π
t+ a) is continuous on [0, π].

From the last paragraph, we can find a polynomial p(t) such that ‖ϕ− p‖∞ < ε on [0, π].
But then the polynomial q(x) = p( π

b−a(x − a)) satisfies ‖f − q‖∞ = ‖ϕ − p‖∞ < ε on
[a, b].

1.5 Mean Convergence of Fourier Series*

This section, which will be covered in MATH3093, is for optional reading.

In Section 2 we studied the uniform convergence of Fourier series. Since the limit of a
uniformly convergent series of continuous functions is again continuous, we do not expect
results like Theorem 1.6 applies to functions with jumps. In this section we will measure
the distance between functions by a norm weaker than the uniform norm. Under the new
L2-distance, you will see that every integrable function is equal to its Fourier expansion
almost everywhere.
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Recall that there is an inner product defined on the n-dimensional Euclidean space
called the Euclidean metric

〈x, y〉2 =
n∑
j=1

xjyj, x, y ∈ Rn.

With this inner product, one can define the concept of orthogonality and angle between
two vectors. Likewise, we can also introduce a similar product on the space of integrable
functions. Specifically, for f, g ∈ R[−π, π], the L2-product is given by

〈f, g〉2 =

ˆ π

−π
f(x)g(x) dx.

The L2-product behaves like the Euclidean metric on Rn except at one aspect, namely, the
condition 〈f, f〉2 = 0 does not imply f ≡ 0. This is easy to see. In fact, when f is equal
to zero except at finitely many points, then 〈f, f〉2 = 0. From Appendix II 〈f, f〉2 = 0 if
and only if f is equal to zero except on a set of measure zero. This minor difference with
the Euclidean inner product will not affect our discussion much, except more caution is
needed when we proceed. Parallel to the Euclidean case, we define the L2-norm of an
integrable function f to be

‖f‖2 =
√
〈f, f〉2,

and the L2-distance between two integrable functions f and g by ‖f − g‖2. (When f, g
are complex-valued, one should define the L2-product to be

〈f, g〉2 =

ˆ π

−π
f(x)g(x) dx ,

so that 〈f, f〉2 ≥ 0. We will be restricted to real functions in this section.) One can verify
that the triangle inequality

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2
holds. We can also talk about fn → f in L2-sense, i.e., ‖fn − f‖2 → 0, or equivalently,

lim
n→∞

ˆ π

−π
|fn − f |2 = 0, as n→∞ .

This is a convergence in an average sense. It is not hard to see that when {fn} tends to
f uniformly, {fn} must tend to f in L2-sense. In fact, we have the inequality

‖f‖22 ≤ 2π‖f‖2∞ ,

which means
‖f − g‖2 ≤

√
2π‖f − g‖∞ ,

so uniform convergence is stronger than L2-convergence. A moment’s reflection will show
that the converse is not always true. Hence convergence in L2-sense is weaker than uniform
convergence. We will discuss various metrics and norms in Chapter 2.
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Our aim in this section is to show that the Fourier series of every integrable function
converges to the function in the L2-sense.

Just like the canonical basis {e1, . . . , en} in Rn, the functions{
1√
2π
,

1√
π

cosnx,
1√
π

sinnx

}∞
n=1

forms an “orthonormal basis” in R[−π, π], see Section 1.1. In the following we denote by

En =

〈
1√
2π
,

1√
π

cosnx,
1√
π

sinnx

〉n
j=1

the (2n+1)-dimensional vector space spanned by the first 2n+1 trigonometric functions.

We start by considering the general situation. Let {φn}∞n=1 be an orthonormal set (not
neccessarily a basis) in R[a, b], i.e.,

ˆ b

a

φnφm = δnm, ∀n,m ≥ 1.

Let
Sn = 〈φ1, . . . , φn〉

be the n-dimensional subspace spanned by φ1, . . . , φn. For a general f ∈ R[a, b], we
consider the minimization problem

inf {‖f − g‖2 : g ∈ Sn} . (1.10)

From a geometric point of view, this infimum gives the L2-distance from f to the finite
dimensional subspace Sn.

Proposition 1.12. Let f ∈ R[a, b]. The followings hold:

(a)
‖f − h‖2 ≤ ‖f − g‖2 ∀g ∈ Sn ,

where h =
∑n

j=1 αjφj, αj = 〈f, φj〉, and equality holds only if g = h .

(b)
〈f, h〉 = ‖h‖22 .

Proof. To minimize ‖f − g‖2 is the same as to minimize ‖f − g‖22. Every g in Sn can be
written as g =

∑n
j=1 βjφj, βj ∈ R. We have

‖f − g‖22 =

ˆ π

−π

(
f −

n∑
j=1

βjφj

)2
=

ˆ π

−π
f 2 − 2

n∑
j=1

βjαj +
n∑
j=1

β2
j .
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When g = h, we have

‖f − h‖22 =

ˆ π

−π
f 2 −

n∑
j=1

α2
j .

Therefore,
‖f − h‖22 ≤ ‖f − g‖22

is the same as ˆ π

−π
f 2 −

n∑
j=1

α2
j ≤
ˆ π

−π
f 2 − 2

n∑
j=1

βjαj +
n∑
j=1

β2
j .

But this follows readily from the inequality

n∑
j=1

(βj − αj)2 ≥ 0 .

It is also clear that the equality holds if and only if βj = αj for all j, that is, g = h . (a)
is established.

To prove (b), we note that th ∈ Sn for all t ∈ R and the function λ(t) ≡ ‖f − th‖22
attains its minimum at t = 1. Therefore,

0 = λ′(1) = −2〈f, h〉+ 2‖h‖22 .

Given an orthonormal set {φn}∞n=1, one may define the “Fourier series” of an L2-
function f with respect to the orthnormal set {φn} to be the series

∑∞
n=1 〈f, φn〉 φn and

set Pnf =
∑n

j=1 〈f, φj〉 φj. Proposition 1.14 asserts that the distance between f and Sn
is equal to ‖f − Pnf‖2. The function Pnf is sometimes called the orthogonal projection
of f on Sn. Indeed, one can verify that it satisfies

〈f − Pnf, g〉2 = 0 , ∀g ∈ Sn ,

so f −Pnf is orthogonal to Sn. (Indeed, this inequality comes from Proposition 1.14 and
µ′(0) = 0 where µ(t) ≡ ‖Pnf − f + tg)‖22.)

As a special case, taking {φn} =
{

1/
√

2π, cosnx/
√
π, sinnx/

√
π
}

and S2n+1 = En, a
direct computation shows that P2n+1f = Snf , where Snf is the n-th partial sum of the
Fourier series of f . Thus we can rewrite Proposition 1.14 in this special case as

Corollary 1.13. For f ∈ R2π, for each n ≥ 1,

‖f − Snf‖2 ≤ ‖f − g‖2 ,

and
〈f, Snf〉 = ‖Snf‖22 ,
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for all g of the form

g = c0 +
n∑
k=1

(cj cos kx+ dj sin kx), c0, ck, dk ∈ R.

Here is the main result of this section.

Theorem 1.14. For every f ∈ R2π,

lim
n→∞

‖Snf − f‖2 = 0.

Proof. Let f ∈ R[−π, π]. We further assume f ≥ 0 . For ε > 0, we can find a step
function s ≥ 0 such that s ≤ f and

´ π
−π(f − s) < ε2/16M where M = supx f(x). Then

‖f − s‖2 ≤

√
M

ˆ π

−π
(f − s) =

ε

4
.

Next we modify s near its points of discontinuity to get a continuous, piecewise linear
function g1 satisfying

‖s− g1‖2 <
ε

4
.

In case g1(π) 6= g1(−π), we modify this function near π to get a new, piecewise linear
function g satisfying g(π) = g(−π) and

‖g − g1‖2 <
ε

4
.

Now g is a continuous, piecewise linear (hence piecewise C1-), 2π-periodic function. Ap-
pealing to Theorem 1.7, we can find some n1 such that

‖g − Sng‖∞ <
ε

4
√

2π
, ∀n ≥ n1 .

It implies

‖g − Sng‖2 ≤
√

2π‖g − Sng‖∞ <
ε

4
.

Putting things together, we have, for all n ≥ n1,

‖f − Snf‖2 ≤ ‖f − Sng‖2 (by Corollary 1.15)

≤ ‖f − s‖2 + ‖s− g1‖2 + ‖g1 − g‖2 + ‖g − Sng‖2
<

ε

4
+
ε

4
+
ε

4
+
ε

4
= ε .
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We have proved the theorem for non-negative functions. In the general case, we use
the relation f = f+ − f− and the triangle inequality to get

‖f − Snf‖2 = ‖f+ − f− − Snf+ + Snf
−‖2

≤ ‖f+ − Snf+‖2 + ‖f− − Snf−‖2 .

Note that the use of Corollary 1.15 is the key to the proof in this theorem. As
an application we have the following result concerning the uniqueness of the Fourier
expansion.

Corollary 1.15. (a) Suppose that f1 and f2 in R2π have the same Fourier series. Then
f1 and f2 are equal almost everywhere.

(b) Suppose that f1 and f2 in C2π have the same Fourier series. Then f1 is equal to f2
everywhere.

Proof. Let f = f2 − f1. The Fourier coefficients of f all vanish, hence Snf = 0, for all
n. By Theorem 1.16, ‖f‖2 = limn→∞ ‖f − Snf‖2 = 0. From Appendix II we know that
f 2, hence f , must vanish almost everywhere. In other words, f2 is equal to f1 almost
everywhere. (a) holds. To prove (b), letting f be continuous and assuming that it is not
equal to zero at some x0, by continuity it is non-zero for all points near x0. We can find
some small δ > 0 such that f 2(x) ≥ f 2(x0)/2 for all x ∈ (x0 − δ, x0 + δ). But then

ˆ π

−π
f 2 ≥

ˆ x0+δ

x0−δ
f 2

≥ f 2(x0)

2
× 2δ > 0 ,

contradicting ‖f‖2 = 0. Hence f must vanish identically.

Another interesting consequence of Theorem 1.16 is the Parseval’s identity.

Corollary 1.16 (Parseval’s Identity). For every f ∈ R2π,

‖f‖22 = 2πa20 + π

∞∑
n=1

(
a2n + b2n

)
,

where an and bn are the Fourier coefficients of f .
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Proof. Making use of Corollary 1.15 and the relations such as 〈f, cosnx/
√
π〉2 =

√
πan, n ≥

1,

〈f, Snf〉2 = ‖Snf‖22

= 2πa20 + π

n∑
j=1

(a2j + b2j).

By Theorem 1.16,

0 = lim
n→∞

‖f − Snf‖22 = lim
n→∞

(
‖f‖22 − 2〈f, Snf〉2 + ‖Snf‖22

)
= lim

n→∞

(
‖f‖22 − ‖Snf‖22

)
= ‖f‖22 − lim

n→∞
‖Snf‖22

= ‖f‖22 −
[
2πa20 + π

∞∑
n=1

(
a2n + b2n

) ]
.

In general, an orthonormal set {φn} in R[a, b] is called complete if

‖f −
n∑
k=1

〈f, φk〉‖22 → 0, as n→∞ ,

for every f . Whevever this happens, the proof above shows that the general Parseval’s
Identity

‖f‖22 =
∞∑
n=1

〈f, φn〉2

holds. Our main theorem asserts that {1/
√

2π, cosnx/
√
π, sinnx/

√
π} forms a complete

orthonormal set in R[−π, π]. It plays the role like the canonical basis {e1, · · · , cn} in the
Eulcidean space Rn.

The norm of f can be regarded as the length of the “vector” f . Parseval’s Identity
shows that the square of the length of f is equal to the sum of the square of the length of
the orthogonal projection of f onto each one-dimensional subspace spanned by the sine
and cosine functions. This is an infinite dimensional version of the ancient Pythagoras
theorem. It is curious to see what really comes out when you plug in some specific
functions. For instance, we take f(x) = x and recall that its Fourier series is given by∑

2(−1)n+1/n sinnx. Therefore, an = 0, n ≥ 0 and bn = 2(−1)n+1/n and Parseval’s
identity yields Euler’s summation formula

π2

6
= 1 +

1

4
+

1

9
+

1

16
+ · · · .

You could find more interesting identities by applying the same idea to other functions.
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Appendix I Series of Functions

This appendix serves to refresh your memory after the long, free summer.

A (real) sequence is a mapping ϕ from N to R. For ϕ(n) = an, we usually denote the
sequence by {an} rather than ϕ. This is a convention. We say the sequence is convergent
if there exists a real number a satisfying, for every ε > 0, there exists some n0 such that
|an − a| < ε for all n, n ≥ n0. When this happens, we write a = limn→∞ an.

An (infinite) series is always associated with a sequence. Given a sequence {xn},
set sn =

∑n
k=1 xk and form another sequence {sn}. This sequence is the infinite series

associated to {xn} and is usually denoted by
∑∞

k=1 xk. The sequence {sn} is also called
the sequence of n-th partial sums of the infinite series. By definition, the infinite series
is convergent if {sn} is convergent. When this happens, we denote the limit of {sn} by∑∞

k=1 xk, in other words, we have

lim
n→∞

n∑
k=1

xk =
∞∑
k=1

xk.

So the notation
∑∞

k=1 xk has two meanings, first, it is the notation for an infinite series
and, second, the limit of its partial sums (whenever it exists).

When the target R is replaced by C, we obtain a sequence or a series of complex
numbers, and the above definitions apply to them after replacing the absolute value by
the complex absolute value or modulus.

Let {fn} be a sequence of real- or complex-valued functions defined on some non-
empty E on R. It is called convergent pointwisely to some function f defined on the
same E if for every x ∈ E, {fn(x)} converges to f(x) as n → ∞. Keep in mind that
{fn(x)} is sequence of real or complex numbers, so its convergence has a valid meaning.
A more important concept is the uniform convergence. The sequence {fn} is uniformly
convergent to f if, for every ε > 0, there exists some n0 such that |fn(x)− f(x)| < ε for
all n ≥ n0. In notation fn ⇒ f . Equivalently, uniform convergence holds if, for every
ε > 0, there exists some n1 such that ‖fn − f‖∞ < ε for all n ≥ n1. Here ‖f‖∞ denotes
the sup-norm of f on E.

An (infinite) series of functions is the infinite series given by
∑∞

k=1 fk(x) where fk are
defined on E. Its convergence and uniform convergence can be defined via its partial sums
sn(x) =

∑n
k=1 fk(x) as in the case of sequences of numbers.

Among several criteria for uniform convergence, the following test is the most useful
one.

Weierstrass M-Test. Let {fk} be a sequence of functions defined on some E ⊂ R.
Suppose that there exists a sequence of non-negative numbers, {ak}, such that
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(a) |fk(x)| ≤ ak for all k ≥ 1, and

(b)
∑∞

k=1 ak is convergent.

Then
∑∞

k=1 fk converges uniformly and absolutely on E.

Also, the following “exchange theorem”.

Exchange Theorem. Let sn =
∑n

k=1 fk be uniformly convergent to
∑∞

k=1 fk on some
E ⊂ R. Then

(a)
∑∞

k=1 fk ∈ C(E) if fk ∈ C(E) for all k.

(b) If E is an interval and fk’s are differentiable with
∑n

k=1 f
′
k ⇒

∑∞
k=1 f

′
k, then

∑∞
k=1 fk

is also differentiable and ( ∞∑
k=1

fk

)′
=
∞∑
k=1

f ′k .

Appendix II Sets of Measure Zero

Let E be a subset of R. It is called of measure zero, or sometimes called a null set,
if for every ε > 0, there exists a (finite or infinite) sequence of intervals {Ik} satisfying
(1) E ⊂ ∪∞k=1Ik and (2)

∑∞
k=1 |Ik| < ε. (When the intervals are finite, the upper limit of

the summation should be changed accordingly.) Here Ik could be an open, closed or any
other interval and its length |Ik| is defined to the b− a where a ≤ b are the endpoints of
Ik.

The empty set is a set of measure zero from this definition. Every finite set is also null.
For, let E = {x1, · · · , xN} be the set. For ε > 0, the intervals Ik = (x1 − ε/(4N), xk +
ε/(4N)) clearly satisfy (1) and (2) in the definition.

Next we claim that every countable set is also of measure zero. Let E = {x1, x2, · · · }
be a countable set. We choose

Ik =
(
xk −

ε

2k+2
, xk +

ε

2k+2

)
.

Clearly, E ⊂ ∪∞k=1Ik. On the other hand,

∞∑
k=1

|Ik| =
∞∑
k=1

ε

2k+1

=
ε

2
< ε .
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We conclude that every countable set is a null set.

There are uncountable sets of measure zero. For instance, the Cantor set which plays
an important role in analysis, is of measure zero. Here we will not go into this.

The same trick in the above proof can be applied to the following situation.

Proposition A.1. The union of countably many null sets is a null set.

Proof. Let Ek, k ≥ 1, be sets of measure zero. For ε > 0, there are intervals satisfying
{Ikj }, Ek ⊂ ∪jIkj , and

∑
j |Ikj | < ε/2k. It follows that E ≡ ∪kEk ⊂ ∪j,kIkj = ∪k ∪j Ikj and∑

k

∑
j

|Ikj | <
∑
k

ε

2k
= ε.

The concept of a null set comes up naturally in the theory of Riemann integration. A
theorem of Lebsegue asserts that a bounded function is Riemann integrable if and only
if its discontinuity set is null. The following result is used in the uniqueness assertion on
Fourier series. I provide a proof here, but you may just take it for granted.

Proposition A.2. Let f be a non-negative integrable function on [a, b]. Then
´ b
a
f = 0

if and only if f is equal to 0 except on a null set. Consequently, two integrable functions
f, g satisfying ˆ b

a

|f − g| = 0,

if and only if f is equal to g except on a null set.

Proof. We set, for each k ≥ 1, Ak = {x ∈ [a, b] : f(x) > 1/k}. It is clear that

{x : f(x) > 0} =
∞⋃
k=1

Ak .

By Proposition A.1., it suffices to show that each Ak is null. Thus let us consider Ak0 for
a fixed k0. Recall from the definition of Riemann integral, for every ε > 0, there exists a
partition a = x1 < x2 < · · · < xn = b such that

0 ≤
n−1∑
k=1

f(zk)|Ik| =

∣∣∣∣∣
n−1∑
k=1

f(zk)|Ik| −
ˆ b

a

f

∣∣∣∣∣ < ε

k0
,

where Ik = [xk, xk+1] and zk is an arbitrary tag in [xj, xj+1]. Let {k1, · · · , km} be the
index set for which Ikj contains a point zkj from Ak0 . Choosing the tag point to be zkj ,
we have f(zkj) > 1/k0. Therefore,

1

k0

∑
kj

|Ikj | =
∑
kj

f(zkj)|Ikj | ≤
n−1∑
k=1

f(zk)|Ik| <
ε

k0
,
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so ∑
kj

|Ikj | < ε.

We have shown that Ak0 is of measure zero.

Conversely, assume that the set Z = {x ∈ [a, b] : f(x) 6= 0} is of measure zero. For ε >
0, there are open intervals Ik whose union covers Z and

∑
k |Ik| < ε. Without loss of gener-

ality we may assume these Ik are mutually disjoint. Let [c, d] ⊂ (a, b). Since [c, d] is a com-
pact set and Ik’s cover [c, d], there exist a finite subcover. Re-index these finite intervals
as (a1, b1), (a2, b2), · · · , (an, bn) where a1 < c and d < bn. The points c, b1, a2, b2, · · · , an, d
form a partition of [c, d]. Since f vanishes away from [c, b1], [a2, b2], · · · [an, d], the Riemann
sum R =

∑
f(xj)∆xj satisfies |R| ≤ M

∑
∆xj ≤ Mε , where M = sup |f |. Since ε can

be arbitrarily small, we conclude that

ˆ d

c

f(x)dx = 0 ,

for all a < c < d < b. Now, given ε > 0, fix c, d so that M(c− a+ b− d) < ε. Then∣∣∣∣ˆ b

a

f(x)dx

∣∣∣∣ ≤ ∣∣∣∣ˆ c

a

f(x)dx

∣∣∣∣+

∣∣∣∣ˆ d

c

f(x)dx

∣∣∣∣+∣∣∣∣ˆ b

d

f(x)dx

∣∣∣∣
≤ M(c− a) +M(b− d)

< ε ,

done.

A property holds almost everywhere if it holds except on a null set. For instance,
this proposition asserts that the integral of a non-negative function is equal to zero if and
only if it vanishes almost everywhere.

Comments on Chapter 1. Historically, the relation (2.2) comes from a study on the
one-dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2

where u(x, t) denote the displacement of a string at the position-time (x, t). Around 1750,
D’Alembert and Euler found that a general solution of this equation is given by

f(x− ct) + g(x+ ct)

where f and g are two arbitrary twice differentiable functions. However, D. Bernoulli
found that the solution could be represented by a trigonometric series. These two different
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ways of representing the solutions led to a dispute among the mathematicians at that
time, and it was not settled until Fourier gave many convincing examples of representing
functions by trigonometric series in 1822. His motivation came from heat conduction.
After that, trigonometric series have been studied extensively and people call it Fourier
series in honor of the contribution of Fourier. Nowadays, the study of Fourier series has
matured into a branch of mathematics called harmonic analysis. It has equal importance
in theoretical and applied mathematics, as well as other branches of natural sciences and
engineering.

The book by R.T. Seely, “An Introduction to Fourier Series and Integrals”, W.A.
Benjamin, New York, 1966, is good for further reading.

In some books the Fourier series of a function is written in the form

a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx),

instead of

a0 +
∞∑
n=1

(an cosnx+ bn sinnx),

so that the formula for a0 is the same as the other an’s (see (2.1)). However, our notation
has the advantage that a0 has a simple meaning, i.e., it is the average of the function over
a period.

Concerning the convergence of a Fourier series to its function, we point out that an
example of a continuous function whose Fourier series diverges at some point can be
found in Stein-Sharachi. More examples are available by googling. The classical book
by A. Zygmund, “Trigonometric Series” (1959) reprinted in 1993, contains most results
before 1960. After 1960, one could not miss to mention Carleson’s sensational work in
1966, whose result implies that the Fourier series of every function in R2π converges to
the function itself almost everywhere.

There are several standard proofs of the Weierstrass approximation theorem, among
them Rudin’s proof in “Principles” by expanding an integral kernel and Bernstein’s proof
based on binomial expansion are both worth reading. Recently the original proof of
Weierstrass by the heat kernel is available on the web. It is nice to take a look too. In
Chapter 3 we will reproduce Rudin’s proof and then discuss Stone-Weierstrass theorem,
a far reaching generalization of Weierstrass approximation theorem.

The aim of this chapter is to give an introduction to Fourier series. It will serve the
purpose if your interest is aroused and now you consider to take our course on Fourier
analysis in the future. Not expecting a thorough study, I name Stein-Shakarchi as the
only reference.


